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 Plasmon excitation plays important roles in many-body systems’ proper-

ties such as screening and drag in layer structures and is applied in 

plasmonic and photonic technology. This research is to consider the ana-

lytical expressions of plasmon frequencies in a double layer system made 

of mono–layer graphene and GaAs quantum well with separation of d  

and nonhomogeneous dielectric background at zero temperature. In this 

research, random–phase–approximation is used to calculate the dielectric 

function of the system and to determine the plasmon modes by finding out 

zeroes of the function. Results present that the zeroes of dielectric func-

tion admit two solutions (as in the case of semiconductor double quantum 

well systems or double-layer graphene), corresponding to optical and 

acoustic branch, respectively. Meanwhile, the frequency of the former is 

proportional to root square of wave vector and depends on the dielectric 

constant of the surrounding layers; the frequency of the later is propor-

tional to wave vector and depends on dielectric constant of contacting 

media and quantum well in long wavelength limit. 
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1 INTRODUCTION 

It is the fact that both of the unique electronic 

properties (Neto et al., 2009; Sarma et al., 2010) 

and possible technological application (Geim and 

Novoselov, 2007) of graphene attract a lot of atten-

tion from many theoretical and experimental re-

searchers in recent years. One of important differ-

ent characteristics of mono-layer graphene (MLG) 

is that quasi-particle excitations in this material 

have a linear dispersion at low energies and are 

described by the massless Dirac equation (Sarma et 

al., 2010). Because of this different property, the 

plasmon of double layer systems consisting of 

MLG would be predicted to have lots of significant 

differences from those of single layer one. 

Plasmon excitations in many-electron systems, an 

important property, have been studied for a long 

time and have been used to create plasmonic and 

photonic devices (Maier, 2007). The dynamical 

dielectric function and plasmon dispersion relation 

are two important many-body quantities in such 

structures (Vazifehshenas et al., 2010). Therefore, 

it can be seen that the dielectric function and plas-

mon mode of two-dimensional electron gas 

(2DEG) were calculated both with and without 

correlation (Khanh, 1996 and 2001; Khanh and 

Toan, 2003). Besides, dielectric function and plas-

mon dispersion of MLG and bi-layer graphene 

(BLG) were considered by Hwang and Sarma 

(2007) and by Sensarma et al. (2010). On the other 

hand, double-layer structures have been studied in 
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recent years such as double-layer graphene (DLG) 

with homogeneous dielectric background at both 

zero and finite temperature (Hwang and Sarma, 

2009; Tuan and Khanh, 2013) with numerical and 

analytical in long wavelength limit, DLG with 

nonhomogeneous dielectric background at finite 

temperature (Badalyan and Peeters, 2012), plasmon 

modes of double-layer structures consisting of 

MLG and very thin 2DEG sheet at zero tempera-

ture (Principi et al., 2012). In that work, Principi et 

al. (2012) have shown that long-range Coulomb 

interactions between massive electrons and mass-

less Dirac fermions lead to a new set of optical and 

acoustic intra-subband plasmons. An analytical 

result for plasmon frequency has been found for 

this kind of system. Similarly, another analytical 

result for plasmon frequencies in a BLG – 2DEG 

system has been shown by Nguyen Van Men and 

Nguyen Quoc Khanh (2017). Finally, recent re-

searches relevant to graphene studied in India 

(Digish, 2015) and in Vietnam (Ho Sy Ta, 2017) 

showed the interest of material scientists in gra-

phene. It is the fact that although collective excita-

tions of such chiral-nonchiral double-layer struc-

tures (MLG – 2DEG as an example) may have 

interesting properties, this property of MLG-2DEG 

systems including layer-thickness of 2DEG sheet 

and nonhomogeneous background has not been 

paid enough attention by physicists. 

Because of above reasons, this paper considers a 

double-layer system consisting of doped MLG and 

GaAs quantum well, separated by a spacer of width 

d  assuming that 2DEGs in MLG and GaAs are 

electrically isolated (Gamucci et al., 2014). Inho-

mogeneity of the background and 2DEG layer-

thickness are taken into account in calculations. An 

analytical expression for plasmon frequencies 

would be final destination. 

2 THEORY 

The consideration double-layer system is made of a 

MLG flake placed onto modulation-doped 

GaAs/AlGaAs heterostucture hosting a 2DEG, 

with the effective electron mass 
*m  in the GaAs 

quantum well as shown in Fig. 1. 
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Fig. 1: A MLG-2DEG double-layer system im-

mersed in a three-layered different dielectric 

medium
1k , 

2k , and 
3k  

The plasmon dispersion relation of an electronic 

system can be obtained from the zeroes of dynam-

ical dielectric function (Sarma and Madhukar, 

1981; Hwang and Sarma, 2009). 

( ), 0q ip  − =        (1) 

Where p  is the plasmon frequency at a given 

wave-vector q and γ is the damping rate of plasma 

oscillations. In case of weak damping ( p  ), the 

plasmon dispersion and decay rate are determined 

from the following equations (Tanatar and 

Davoudi, 2003; Vazifehshenas et al., 2010). 

( )Re , 0q p  =        (2) 

( )
( )

1

Re ,
Im ,

q
q p

p

 
  


 

−
 
 

=   =
 

  (3) 

In the random–phase–approximation (RPA), the 

dynamical dielectric function of MLG-2DEG dou-

ble-layer system has the form (Vazifehshenas et 

al., 2010; Tuan and Khanh, 2013; Badalyan and 

Peeters, 2012). 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )  ( ) ( )

, 1 , ,
2DEG-g 2DEG 2DEG g g

2[ ] , ,2 g g-2DEG 2DEG g

q U q q U q q

U q U q U q q qDEG

   

 

= +  +  +

−  

    (4)

where ( ),2DEG q   and ( ),g q   are the zero-

temperature non-interacting density-density re-

sponse functions of the 2DEG and MLG, respec-

tively (Stern, 1967; Czachora et al., 1982; Sarma et 

al., 2010 and 2011). ( )2DEG/gU q  and  ( )g-2DEGU q   

are the intra- and inter-layer bare Coulomb interac-

tions in momentum space found out by solving 
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Poisson equation (Scharf and Matos-Abiague, 

2012).   

( ) ( )
24

,2DEG/g 2DEG/g
e

U q f qd qw
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=    (5) 
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28
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It can be seen that the dielectric function of MLG-

2DEG is evidently complicated. Hence, the analyt-

ical solution of Eq. (2) can be found only in ap-

proximation. 

3 RESULTS AND DISCUSSION 

This section illustrates the analytical solutions of 

Eq. (2) with long wavelength approximation calcu-

lations. Using long wavelength expansions of 

( ),2DEG q   and ( )g ,q   (Czachora et al., 

1982; Sarma et al., 2011), Eq. (2) admits the fol-

lowing solutions: 

( ) ( ) ( )
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where 
222 2
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DEG
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22
2
0

e v nF g
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and Fv  is graphene velocity.  Here  2DEGn  and  

gn  are the density of carriers in 2DEG and MLG, 

respectively. In limit 0q→ , we have 1qd   

and 1qw  , hence ( )2DEG ,f qd qw , 

( ),gf qd qw , and ( )2DEG ,gf qd qw−
 shown in 

Eqs. (7), (8), (9) can be expanded to the first order 

of q, and get 

( )
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Replace Eqs. (12), (13), and (14) into Eq. (11). 

Note that in the case of plus sign, only the first 

order of q  is kept, Eq. (11) leads to: 

( )
( ) ( )

2 2 22 2 402 0 42 2
*1 3 1 31 3

e v nF gDEG g e n DEGq q
m
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
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 (15) 

Equation (15) shows that the optical plasmon fre-

quency is proportional to root square of wave vec-

tor. Moreover, this frequency depends only on sur-

rounding layers dielectric constant (
1k  and

3k ). 

This equation also demonstrates that the depend-

ence of optical plasmon frequency on density of 

carriers in MLG and 2DEG is significantly differ-

ent (root square of 
2DEGn  and power a quarter of 

gn ). This result comes from the linear dispersion at 

low energy range. A similar equation has been 

shown by Principi et al. (2012) although the layer-

thickness has been neglected in their work. 

In the case of minus sign, the second order of q  

must be kept because the first order reduces to ze-

ro. Calculations show:  
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   (16) 

Equation (16) illustrates that the solution − is 

proportional to wave-vector and corresponds to 

acoustic plasmon mode. Furthermore, the acoustic 

one ( 0)q− →  depends on both 2k  (dielectric 

constant of contacting media) and 2Dk  (dielectric 

constant of 2DEG sheet). Another significant point 

recognized from Eq.(15) and Eq.(16) is that only 

the analytical acoustic frequency depends on the 

layer-thickness of 2DEG ( w ) and the distance be-

tween two layers of the system ( d ) in long wave-

length limit ( 0q→ ). 

It can be seen that the results are quite similar to 

those obtained by Gasser (1989) for 2DEG in dou-

ble quantum well systems. The first (second) term 

on the second member of Eq. (15) is the square of 

the frequency of the optical plasmon oscillations in 

2DEG (MLG) as shown by Principi et al. (2012) 

although in this paper, calculations have been done 

for the case of finite quantum well width. This 

means that for long wavelength limit, the optical 

frequency almost does not depend on 2DEG layer-

thickness and separated distance. The main differ-

ences between results mentioned in this work and 

Principi et al.’s (2012) ones are the form of acous-

tic frequency as shown in Eq. (16). 

In order to make a comparison between analytical 

results in this paper and numerical ones from other 

authors, both of them are illustrated on Fig. 2 

(thick lines for analytical mentioned in Eq. (11) 

and thin lines for numerical). The numerical results 

are found out by numerical solving Eq. (2) in C++ 

program with full form of response functions for 

2DEG and MLG (Czachora et al., 1982; Sarma et 

al., 2011) and bare Coulomb interactions (Scharf 

and Matos-Abiague, 2012). Half-distance method 

is used for programing calculations, leading to two 

solutions as demonstrated in Fig. 2 (solid and 

dashed thin curves). The figure is plotted for 

12.91 AlGaAsk k= = ; 3.92 2SiOk k= = ; 1.03 Airk k= = ; 

12.92D GaAsk k= = ; electron effective mass 

* 0.067 0m m=  where
0m as the vacuum mass of elec-

tron (Scharf and Matos-Abiague, 2012). Other pa-

rameters are shown in the figure. It is noted that 

Fermi energy and Fermi wave-vector of MLG are 

denoted by EF  and Fk , respectively.
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Fig. 2: Plasmon dispersion of MLG – 2DEG system: analytical (thick lines) and numerical results 

(thin lines). Figure plotted for 100d nm= , 50w nm= , and 
11 2

2 10g DEGn n cm−= = . Dashed-dotted 

lines show the boundaries of single particle excitation (SPE) region of MLG and 2DEG 

It can be seen from Fig. 2 that the analytical results 

obtained in Eq. (11) are almost identical to numeri-

cal ones at sufficiently small q , and present about 

0.3 Fkq   for optical branch and 0.5 Fq k  for 

acoustic one. As the wave vector increases, the 

analytical curves go into SPE region while the nu-

merical ones do not. The numerical optical plas-

mon goes nearly the MLG SPE boundary as in 

MLG (Hwang and Sarma, 2007), and the acoustic 

one touches the edges of 2DEG SPE region and 

disappears as plasmon of 2DEG in quantum well 

(Czachora et al., 1982). 

4 CONCLUSION 

In summary, the analytical plasmon oscillations 

frequencies of both optical and acoustic modes in 

MLG-2DEG double layer at zero temperature us-

ing the RPA dielectric function, taking into account 

the thickness of 2DEG layer and inhomogeneity of 

background dielectric constant have been calculat-

ed for the first time by using long wavelength ex-

pansions of response functions of 2DEG, MLG and 

bare Coulomb interaction. The analytical expres-

sions show that in long wavelength limit, while the 

acoustic mode is proportional to wave vector, de-

pends considerably on spacer width, 2DEG layer-

thickness, and dielectric constant of the contacting 

media; the frequency of optical one is proportional 

to root square of wave vector, almost independent 

on the dielectric constant and thickness of 2DEG 

layer. It is also proven that the density carriers in 

MLG and 2DEG layers have significantly different 

contributions in plasmon frequencies of the system. 
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