
Can Tho University Journal of Science   Vol. 11, No. 1 (2019): 95-99 

 95 

 
DOI: 10.22144/ctu.jen.2019.013 

Law of large number for one dimensional Markov process  

Lam Hoang Chuong1*, Le Thi My Xuan1, Nguyen Thi Thu Ha2 and Le Nguyen Thuy Van3 

1College of Natural Sciences, Can Tho University, Vietnam 
2Master Student in Probability Theory and Statistics – Course 23, Can Tho University, Vietnam 
3Bachelor Student in Applied Mathematics – Course 40, Can Tho University, Vietnam 

*Correspondence: Lam Hoang Chuong (email: lhchuong@ctu.edu.vn) 

Article info. ABSTRACT 

Received 28 May 2018 
Revised 20 Oct 2018 
Accepted 29 Mar 2019 

The aim of this paper is to study the model of Markov process with the 
state space ℤ. The applied method is similar to Depauw et al. (2009) and 
Lam (2014) to prove that this stochastic process converges in probability 
to a constant (Theorem 1.1) and to give its rate also (Theorem 3.1). Pre-
cisely, let L be the corresponding operator of the previous stochastic 
process and f be a given function, we solve the equation Lg f and 

then treat the limit of its solutions, the rate of the convergence is instantly 
given by the convergence of the moment of Markov process. 
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1 INTRODUCTION 

Let ( ) 0Xt t be a Markov process on the state space 

ℤ and suppose that operators 0{ }t tP   acts on a 

bounded function :f    

( ) { ( )| }.0P f k E f X X kt t   (1.1) 

According to Markov chain’s property: 

( ) { ( )| },P f k E f X X kt t s s   

for all 0s  . 

Let operator L is a derivative of 0{ }t tP  at 0t , 

i.e., lim
0

P f ftLf
tt





 

if the limit exists. The domain 𝒟 ( )L of this operator 

is defined as the set of functions such that the limit 
exists.  

For f 𝒟 ( )L , we also have pointwise continuity 

( ) ( )
( ) lim ,

0






P f k f ktLf k
t

t
.k   

The operator L is called the infinitesimal generator 

of Markov process 0( )t tX  . 

Considering Markov process ( ) 0Xt t with 00X  , 

the conductance of the edge between ሾ𝑘; 𝑘 ൅ 1ሿ is
  and the conductance of the edge between ሾ𝑘; 𝑘 െ
1ሿ is  . When 0,t   

ℙ{ 1| } ( ),X k X k t o tt s s       

ℙ{ 1| } ( ),X k X k t o tt s s       

ℙ{ | } 1 ( ) ( ).X k X k t o tt s s         

Also, 
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( ) { ( )| } ( 1) ( ) ( 1) ( 1)P f k E f X X k tf k o t f k tf kt t s s         
( ) ( 1) ( ) ( ) ( ) ( ) ( ),o t f k f k tf k o t f k        

where
( )

lim 0.
o t

tt t



 

 Based on the definition of infinitesimal 
generator L , we have 

( ) ( )
( ) lim ( 1) ( 1) ( ) ( ).

0

P f k f ktLf k f k f k f k
tt

   
      


     

 (1.2) 

In the case ,   the process ( ) 0Xt t  is defined 

as above called unbalanced one-
dimensionalMarkov process. 

Stochastic process model has various applications in 
real-life situations. That is the increase or decrease 
ofan individual after a short period of time, which is 
also called thebirth-death process. In term of a 
dynamical system, it is the random transfer process 
of a particle inside a homogeneous conductor. In 
queueing theory, the number of customers, who just 
came or left after a short period of time,can be 
modeled as aMarkov process.  

In [2], Lam (2014) introduced a model of Markov 
process with the conductance of the edge between 

ሾ𝑘; 𝑘 ൅ 1ሿ is ,k  where ( )k k   be a stationary 

process. He also proved the central limit theorem
2(0; ) .

X Dt N as t
t

   

In the above expression, D  denoting 
convergence in distribution of random variables. 

In this paper, we consider the previous model of 

unbalanced stochastic process 0( )t tX  with the 

infinitesimal generator L as in (1.2)and initial state 

0 0X  . Now we study the law of the process for 

large enough 𝑡. In this case, every state of the 
process is transient(Ross, 2010), and based on this 
result, we prove the existence of law of large 

number for the sequence 0( .)t tX  We have the 

following theorem. 

Theorem 1.1 For all unbalanced stochastic process 

0( )t tX  as above, we get 

X Pt
t
    

As .t  In the above expression, P
denoting convergence in probability of random 
variables and G    is the result of limit. 

It is also called the weak law of large numbers for 
the sequence ( 0.)Xt t Moreover, another aim of the 

paper is to give the rate of convergence. 

This paper is organized as follows. In Section 2, we 
introduce the method used in this paper. The main 
result concerning therate of convergence for 
Theorem 1.1 and the detailed proof are shown in 
Section 3.  

2 RESEARCH METHOD 

We first prove the following lemma. 

Lemma 2.1 Let ( ) 0Zt t be random variables defined 

on the same probability space and𝑎 ∈ ℝ  be an 
arbitrary constant. If  lim

௧→ାஶ
𝐸൫𝑍௧

ℓ൯ ൌ 𝑎ℓfor all ℓ ൌ

1,2, then tZ converges in probability to a as .t  

Proof. 

Applying the Chebyshev’s inequality, we have:  

𝑃ሺ|𝑍௧ െ 𝑎| ൐ 𝜀ሻ ൌ 𝑃ሺሺ𝑍௧ െ 𝑎ሻଶ ൐ 𝜀ଶሻ 

                     ൑
𝐸ሾሺ𝑍௧ െ 𝑎ሻଶሿ

𝜀ଶ  

      ൌ
𝐸ሺ𝑍௧

ଶሻ െ 2𝑡𝐸ሺ𝑍௧ሻ ൅ 𝐸ሺ𝑎ଶሻ

𝜀ଶ  

→ 0 

as 𝑡 →  ൅∞.This completes the proof.     □ 

In the next step, let   be the set of random variables 
with finite second-order moment. We define a 
map 𝑑: ℵ ൈ ℝ → ሾ0; ൅∞ሿ  such that 

𝑑ሺ𝑋, 𝑌ሻ ൌ |𝐸ሺ𝑋 െ 𝑌ሻ| ൅ |𝐸ሺ𝑋ଶ െ 𝑌ଶሻ|(2.1) 

We have the following property. 

Lemma 2.2 Let 0( )t tZ  be a sequence of elements 

in ℵ and 𝑎 ∈  ℝ be a constant.  If lim
௧→ାஶ

𝑑ሺ𝑍௧, 𝑎ሻ ൌ 0, 

then tZ converges in probability toa as .t   

Proof. Equation (2.1) implies 𝑑ሺ𝑍௧, 𝑎ሻ ൌ |𝐸ሺ𝑍௧ െ
𝑎ሻ| ൅ |𝐸ሺ𝑍௧

ଶ െ 𝑎ଶሻ|. By applying the assumption of 
this lemma, i.e., lim

௧→ାஶ
𝑑ሺ𝑍௧, 𝑎ሻ ൌ 0, we conclude 

that lim
௧→ାஶ

𝐸ሺ𝑍௧
௟ሻ ൌ 𝑎௟ for all 𝑙 ൌ 1, 2. Therefore, 

Lemma 2. 1implies the result in Lemma 2.2..                     

□ 

In the following section, we use the map d and 
Lemma 2.2 to find the rate of convergence in 
Theorem 1.1 with 𝑍௧ ൌ 𝑋௧ ോ 𝑡 and𝑎 ൌ 𝐺. 
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3 MAIN RESULTS 

We now consider the unbalanced stochastic process 
introduced in Section 1. In this section, we take into 
account the case 𝜆 ൐ 𝛾 while the proof for the case 
𝜆 ൏ 𝛾 can be treated by the same argument. The 
main result regardingtherate of convergencefor the 
law of large number can be presented as follow. 

Theorem 3.1 We have 

𝑑 ൬
𝑋௧

𝑡
, 𝐺൰ ൌ 𝑂ሺ𝑡ିଵሻ. 

Here, by definition, the function 𝑓ሺ𝑡ሻ ൌ 𝑂൫𝑔ሺ𝑡ሻ൯ if  
limsup

௧→ାஶ
|𝑓ሺ𝑡ሻ ോ 𝑔ሺ𝑡ሻ | ൏ ∞. 

Under the view of law of large numbers, the 
simplest case is the independent and identically 
distributed variables (i.i.d).There are two different 
types: Weak and strong law of large numbers. In our 
model, the concerning stochastic process is a 
Markov process which is more general than the case 
i.i.d. Moreover, we also illustrate the law of large 
numbers for dependent variablesand evaluate the 
rate of convergence. 

We have the following necessary lemmas:   

Lemma 3.1 Let 𝜑: ℤ → ℝ be a given function, there 
exists a unique function Φ: ℤ → ℝ such that 

൜
LΦ ≡ 𝜑

Φሺ0ሻ ൌ 0.
(3.1) 

Proof. 

It is easy to find Φሺ0ሻ. 

For all 𝑚, we consider the equation 𝐿Φሺ𝑚ሻ ൌ
𝜑ሺ𝑚ሻ.   

L is an operator defined as above, we have 

λΦሺ𝑚 ൅ 1ሻ ൅ 𝛾Φሺ𝑚 െ 1ሻ െ ሺ𝜆 ൅ 𝛾ሻΦሺ𝑚ሻ
ൌ 𝜑ሺ𝑚ሻ. 

In other words, 

Φሺ𝑚 ൅ 1ሻ െ Φሺ𝑚ሻ

ൌ
𝛾
𝜆

ሾΦሺ𝑚ሻ െ Φሺ𝑚 െ 1ሻሿ

൅
1
𝜆

𝜑ሺ𝑚ሻ. 

Let 𝜌 ൌ
ఊ

ఒ
 , we obtain  

Φሺ𝑚 ൅ 1ሻ െ Φሺ𝑚ሻ
ൌ 𝜌ሾΦሺ𝑚ሻ െ Φሺ𝑚 െ 1ሻሿ

൅
1
𝜆

𝜑ሺ𝑚ሻ. 

By recursion on m, it yields 

Φሺ𝑚 ൅ 1ሻ െ Φሺ𝑚ሻ ൌ
1
𝜆

෍ 𝜌௞𝜑ሺ𝑚 െ 𝑘ሻ
ାஶ

௞ୀ଴

. 

Then we divide the equations in to two cases 
according to 𝑚, and iterate one more time.  

In case 𝑚 ൒ 1, we find  

Φሺ𝑚ሻ ൌ
1
𝜆

෍ ෍ 𝜌௞𝜑ሺ𝑙 െ 𝑘ሻ.

ାஶ

௞ୀ଴

௠ିଵ

௟ୀ଴

 

Similarly, when 𝑚 ൑ െ1, we also find 

Φሺ𝑚ሻ ൌ െ
1
𝜆 

෍ ෍ 𝜌௞𝜑ሺ1 െ 𝑙 െ 𝑘ሻ
ାஶ

௞ୀ଴

ି௠ାଵ

௟ୀଶ

. 

The function Φ is therefore theunique solution of 
(3.1).    

We return to Theorem 3.1 and analyze 

𝑑 ൬
𝑋௧

𝑡
, 𝐺൰ ൌ ฬ𝐸 ൬

𝑋௧

𝑡
െ 𝐺൰ฬ ൅ ቤ𝐸 ቆ൬

𝑋௧

𝑡
൰

ଶ

െ 𝐺ଶቇቤ.  

As 𝐺 ൌ 𝜆ሺ1 െ 𝜌ሻ for all 𝜌, it remains to prove two 

claims 𝐸 ቀ
௑೟

௧
െ 𝐺ቁ ൌ Oሺ𝑡ିଵሻ and 𝐸 ൬ቀ

௑೟

௧
ቁ

ଶ
െ 𝐺ଶ൰ ൌ

Oሺ𝑡ିଶሻ to obtain the desired result. These properties 
are stated in Proposition 3.1 and Proposition 3.2.   

Proposition 3.1 Let a sequence of random variables

0( )n nX   be defined as above, we have 𝐸 ൬ቀ
௑೟

௧
ቁ

ଶ
െ

𝐺ଶ൰ ൌ Oሺ𝑡ିଶሻ . 

Proof. We consider the function sequence 0fk  

with the domain ℤ such that 

ቐ
𝐿𝑓௞ ≡ 𝑓௞ିଵ,                𝑘 ൒ 1

𝑓଴ ≡ 1,                                       
𝑓௞ሺ0ሻ ൌ 0,                    𝑘 ൒ 1.

 

Applying Lemma 3.1 by substituting𝜑 ≡  𝑓଴, Φ ≡
𝑓ଵ yields 

 If 𝑚 ൒ 1 

𝑓ଵሺ𝑚ሻ ൌ
1
𝜆

෍ ෍ 𝜌௞𝑓଴ሺ𝑙 െ 𝑘ሻ

ାஶ

௞ୀ଴

௠ିଵ

௟ୀ଴

ൌ
1
𝜆

෍ ෍ 𝜌௞ ൌ

ାஶ

௞ୀ଴

௠ିଵ

௟ୀ଴

1
𝜆

෍
1

1 െ 𝜌

௠ିଵ

௟ୀ଴

ൌ
𝑚

𝛾ሺ1 െ 𝜌ሻ
. 

If 𝑚 ൑ െ1 
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𝑓ଵሺ𝑚ሻ ൌ െ
1
𝜆

෍ ෍ 𝜌௞𝑓଴ሺ1 െ 𝑙 െ 𝑘ሻ
ାஶ

௞ୀ଴

ି௠ାଵ

௟ୀଶ

ൌ െ
1
𝜆

෍ ෍ 𝜌௞

ାஶ

௞ୀ଴

ି௠ାଵ

௟ୀଶ

ൌ
𝑚

𝜆ሺ1 െ 𝜌ሻ
. 

Thus, 

𝑓ଵሺ𝑚ሻ ൌ
𝑚

𝜆ሺ1 െ 𝜌ሻ
 

for all 𝑚. 

Again, we use Lemma 3.1 with 𝜑 ≡ 𝑓ଵ, Φ ≡ 𝑓ଶ to 
obtain 

If 𝑚 ൒ 1 then 

    𝑓ଶሺ𝑚ሻ ൌ
1
𝜆

෍ ෍ 𝜌௞𝑓ଵሺ𝑙 െ 𝑘ሻ
ାஶ

௞ୀ଴

௠ିଵ

௟ୀ଴

 

                ൌ
1

𝜆ଶሺ1 െ 𝜌ሻ
෍ ෍ 𝜌௞ሺ𝑙 െ 𝑘ሻ

ାஶ

௞ୀ଴

௠ିଵ

௟ୀ଴

 

                ൌ  
1

𝜆ଶሺ1 െ 𝜌ሻଶ ቆ
ሺ𝑚 െ 1ሻ𝑚

2
െ

𝑚𝜌
ሺ1 െ 𝜌ሻ

ቇ. 

If 𝑚 ൑ െ1 then 

𝑓ଶሺ𝑚ሻ     ൌ െ
1
𝜆

෍ ෍ 𝜌௞𝑓ଵሺ1 െ 𝑙 െ 𝑘ሻ
ାஶ

௞ୀ଴

ି௠ାଵ

௟ୀଶ

 

ൌ െ
1
𝜆ଶ ෍ ෍ 𝜌௞ ሺ1 െ 𝑙 െ 𝑘ሻ

1 െ 𝜌

ାஶ

௞ୀ଴

ି௠ାଵ

௟ୀଶ

 

ൌ െ
1

𝜆ଶሺ1 െ 𝜌ሻ
෍ ൭෍ 𝜌௞ሺ1 െ 𝑙ሻ

ାஶ

௞ୀ଴

ି௠ାଵ

௟ୀଶ

൅ ሺെ𝑘ሻ𝜌 ෍ 𝜌௞ିଵ

ାஶ

௞ୀ଴

൱ 

ൌ  
1

𝜆ଶሺ1 െ 𝜌ሻଶ ቆ
ሺ𝑚 െ 1ሻ𝑚

2
െ

𝑚𝜌
ሺ1 െ 𝜌ሻ

ቇ. 

We conclude that 

         𝑓ଶሺ𝑚ሻ ൌ
1

𝜆ଶሺ1 െ 𝜌ሻଶ ቆ
ሺ𝑚 െ 1ሻ𝑚

2
െ

𝑚𝜌
ሺ1 െ 𝜌ሻ

ቇ 

for all 𝑚.       

Thenfor all 𝑚 and 𝑘 ൒ 1, one has 𝐿𝑓௞ሺ𝑚ሻ ൌ
𝑓௞ିଵሺ𝑚ሻ. 

Substituting 𝑚 by 𝑋௧ and evaluating expectation of 
two sides, 𝐿𝑓௞ሺ𝑋௧ሻ ൌ 𝑓௞ିଵሺ𝑋௧ሻ for all 𝑡 ൒ 0. For 
every 𝑘 ൌ  1,2തതതത, we claim that 

𝐸ሼ𝑓௞ሺ𝑋௧ሻሽ  ൌ
௧ೖ

௞
,                      (3.2) 

Where 𝑓௞ሺ0ሻ ൌ 0according to the definition of 𝑓௞ 
and 𝑋଴ ൌ 0 according to the assumption of the 
stochastic process 𝑋௧. Expression (3.2) is proved by 
the following way. 

When 𝑘 ൌ 1: 

Let ℎଵሺ𝑡ሻ ൌ  𝐸ሼ𝑓ଵሺ𝑋௧ሻሽ, we have 

𝐸ሼ𝐿𝑓ଵሺ𝑋௧ሻሽ       ൌ lim
௦→଴

𝐸ሼ
𝐸ሼ𝑓ଵሺ𝑋௧ା௦ሻ|𝑋௧ሽ െ 𝑓ଵሺ𝑋௧ሻ

𝑠
ሽ 

   ൌ lim
௦→଴

𝐸ሼ
𝑓ଵሺ𝑋௧ା௦ሻ െ 𝑓ଵሺ𝑋௧ሻ

𝑠
ሽ 

                ൌ lim
௦→଴

ℎଵሺ𝑡 ൅ 𝑠ሻ െ ℎଵሺ𝑡ሻ
𝑠

ൌ
𝑑ℎଵሺ𝑡ሻ

𝑑𝑡
. 

Because 𝐸ሼ𝐿𝑓ଵሺ𝑋௧ሻሽ ൌ 1, we find ℎଵሺ௧ሻ ൌ 𝑡 ൅ 𝛽 
with 𝑡 ൒ 0. Additionally, ℎଵሺ0ሻ ൌ 𝐸ሼ𝑓ଵሺ𝑋଴ሻሽ ൌ 0 

so that 𝛽 ൌ 0. In other words, ℎଵሺ𝑡ሻ ൌ 𝐸ሼ𝑓ଵሺ𝑋௧ሻሽ ൌ
𝑡. 

When 𝑘 ൌ 2: 

Let ℎଶሺ𝑡ሻ ൌ  𝐸ሼ𝑓ଶሺ𝑋௧ሻሽ, we have 𝐸ሼ𝐿𝑓ଶሺ𝑋௧ሻሽ ൌ
𝐸ሼ𝑓ଵሺ𝑋௧ሻሽ ൌ 𝑡 

so that ℎଶሺ𝑡ሻ ൌ
௧మ

ଶ
൅ 𝛽 for all 𝑡 ൒ 0 . 

Moreover, ℎଶሺ0ሻ ൌ 𝐸ሼ𝑓ଶሺ𝑋଴ሻሽ ൌ 0 so we 

obtain 𝛽 ൌ 0 and ℎଶሺ𝑡ሻ ൌ
௧మ

ଶ
. 

As a result, 𝐸ሼ𝑓௞ሺ𝑋௧ሻሽ  ൌ
௧ೖ

௞
  and 𝑘 ൌ 1,2തതതത when 𝑡 is 

large enough. Expression (3.2) can be rewritten as 

the following form 𝐸 ൜
௙ೖሺ௑೟ሻ

௑೟
ೖ ൈ

௑೟
ೖ

௧ೖ ൠ ~
ଵ

௞
 

when 𝑡 is large enough and for every 𝑘 ൌ 1,2തതതത. 

Due to the existence of  lim
௠→ஶ

𝑓௞ሺ𝑚ሻ/𝑚௞, the limit 

of 𝐸 ൜
௑೟

ೖ

௧ೖ ൠ also exists. In what follows we evaluate 

lim
௠→ஶ

𝑓௞ሺ𝑚ሻ/𝑚௞ for k=1,2. 

Lemma 3.2 For every 𝑘 ൌ 1,2തതതത , let kf be the 

function defined as in Proposition 3.1. Then we have 

lim
௠→േஶ

௙ೖሺ௠ሻ

௠ೖ ൌ
ଵ

௞
ቀ

ଵ

ఒሺଵିఘሻ
ቁ

௞
.                   (3.3) 

Proof. We have 

           If 𝑘 ൌ 1 then 

lim
௠→േஶ

𝑓ଵሺ𝑚ሻ

𝑚
ൌ lim

௠→േஶ

𝑚
𝑚𝜆ሺ1 െ 𝜌ሻ

ൌ
1

𝜆ሺ1 െ 𝜌ሻ
. 

If 𝑘 ൌ 2: then 
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lim
௠→േஶ

𝑓ଶሺ𝑚ሻ

𝑚ଶ ൌ lim
௠→േஶ

1
𝑚ଶ𝜆ଶሺ1 െ 𝜌ሻଶ ቆ

ሺ𝑚 െ 1ሻ𝑚
2

െ
𝑚𝜌

1 െ 𝜌
ቇ ൌ

1
2

൬
1

𝜆ሺ1 െ 𝜌ሻ
൰

ଶ

. 

This proves the lemma.  □  

By Lemma 3.2, for every arbitrary constant 𝜖 ൐ 0, 
there exists 𝑀 ൐ 0 such that, for all 𝑚 ൒ 𝑀, we 
have 

ቤ
𝑚ଶ

𝑓ଶሺ𝑚ሻ
െ 2𝐺ଶቤ ൏ 𝜖. 

We recall that 𝐺 ൌ 𝜆ሺ1 െ 𝜌ሻ ൌ 𝜆 െ 𝛾. One has the 
following cases: 

If |𝑋௧| ൒ 𝑀then 

ቤ𝐸 ቆ൬
𝑋௧

𝑡
൰

ଶ

െ 𝐺ଶቇቤ ൎ ቤ𝐸 ቆ
𝑋௧

ଶ

𝑡ଶ െ 2𝐺ଶ.
𝑓ଶሺ𝑋௧ሻ

𝑡ଶ ቇቤ

൑ 𝐸 ቆቤ
𝑋௧

ଶ

𝑓ଶሺ𝑋௧ሻ
െ 2𝐺ଶቤ . ቤ

𝑓ଶሺ𝑋௧ሻ

𝑡ଶ ቤቇ

൑
𝜖
2

 

When 𝑡 is large enough. 

If |𝑋௧| ൏ 𝑀 then 

ቤ𝐸 ቆ൬
𝑋௧

𝑡
൰

ଶ

െ 𝐺ଶቇቤ ൎ ቤ𝐸 ቆ
𝑋௧

ଶ

𝑡ଶ െ 2𝐺ଶ.
𝑓ଶሺ𝑋௧ሻ

𝑡ଶ ቇቤ

൑ 𝐸 ቆ
𝑀ଶ

𝑡ଶ ൅ 2𝐺ଶ.
|𝑓ଶሺ𝑋௧ሻ|

𝑡ଶ ቇ ൑
𝐷ଵ

𝑡ଶ  

as 𝑡 is large enough. These estimations complete the 
proof.                       □ 

Proposition 3.2 Let ሺ𝑋௧ሻ௧ஹ଴ be a stochastic process 

defined as above, we have 𝐸 ቀ
௑೟

௧
െ 𝐺ቁ ൌ Oሺ𝑡ିଵሻ. 

Proof. For every arbitrary constant 𝜖 ൐ 0, there 
exists 𝑁 ൐ 0 such that, for all 𝑚 ൒ 𝑁, one has 

ቚ
௙భሺ೘ሻ

௠
െ

ଵ

ீ
ቚ ൏ 𝜖. 

If |𝑋௧| ൒ 𝑁 then 

ฬ𝐸 ൬
𝑋௧

𝑡
െ 𝐺൰ฬ ൌ ቤ𝐸 ቆ

𝑋௧

𝑡
െ 𝐺.

𝑓ଵሺ𝑋௧ሻ

𝑡
ቇቤ  

൑ 𝐸 ቆฬ
𝑋௧

𝑡
. 𝐺ฬ . ቤ

1
𝐺

െ
𝑓ଵሺ𝑋௧ሻ

𝑋௧
ቤቇ ൑ 𝜖 

When 𝑡 is large enough.    

If |𝑋௧| ൏ 𝑁 then 

ฬ𝐸 ൬
𝑋௧

𝑡
െ 𝐺൰ฬ ൌ ቤ𝐸 ቆ

𝑋௧

𝑡
െ 𝐺.

𝑓ଵሺ𝑋௧ሻ

𝑡
ቇቤ

൑ 𝐸 ቆ
𝑁
𝑡

൅ 𝐺.
|𝑓ଵሺ𝑋௧ሻ|

𝑡
ቇ ൑

𝐷ଶ

𝑡
 

when t is large enough. We obtain the result. □ 

4 CONCLUSIONS   

The rate of convergence regarding the law of large 
numbers for the unbalanced stochastic process 
model in one dimensional space was evaluated. The 
method used in this paper can be applied in future 
research with other meaningful results. 
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