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 Deep learning methods such as recurrent neural network and long short-

term memory have attracted a great amount of attentions recently in 

many fields including computer vision, natural language processing and 

finance. Long short-term memory is a special type of recurrent neural 

network capable of predicting future values of sequential data by taking 

the past information into account. In this paper,  the architectures of var-

ious long short-term memory networks are presented and the description 

of how they are used in sequence prediction is given. The models are 

evaluated based on the benchmark time series dataset. It is shown that the 

bidirectional architecture obtains the better results than the single and 

stacked architectures in both the experiments of different time series data 

categories and forecasting horizons. The three architectures perform well 

on the macro and demographic categories, and achieve average mean 

absolute percentage errors less than 18%. The long short-term memory 

models also show the better performance than most of the baseline mod-

els. 
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1 INTRODUCTION 

Time series is a sequence of data points indexed 

along the time they are collected. Most often, the 

data is taken at regular time intervals. Forecasting 

future values of time series data is a common prob-

lem in many practical fields such as economics, 

finance, weather forecasting, as well as applied 

science and engineering. Predicting the weather for 

the next days, the closing price of a stock each day, 

product sales in units sold during summer for a 

shop and future heart failure are well-known ex-

amples. 

Time series data introduces a dependent relation-

ship among collected observations. Time series 

forecasting makes use of a forecasting model to 

predict future values based on previously observed 

values. A time series forecasting model is also 

known as a sequence prediction model as shown in 

Fig. 1. 
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Fig. 1: Example of Sequence Prediction Problem. The prediction model takes the input sequence of 

observed values 1-6 and generates the predicted value 7 at the output 

Some interesting properties of time series are sta-

tionarity, seasonality, and autocorrelation. A time 

series is called stationary when the mean and vari-

ance are constant over time, while a time series has 

a trend if the mean is changing over time. Season-

ality refers to the phenomenon of variations over 

an observed period of time, for example, tourist 

numbers increase every summer. Time series with 

trend or with seasonality are non-stationary. A 

common approach to making the time series sta-

tionary is to use some transformation such 

as differencing by subtracting the time series data 

in the current time from the previous 

one. Autocorrelation refers to the correlation be-

tween the time series with a copy of itself from a 

previous time. 

Classical methods like autoregressive integrated 

moving average (ARIMA) models (Box and Jen-

kins, 1970) require stationary time series data. 

Eliminating a trend or seasonality component to 

have the time series stationary is done in the data 

preprocessing step of the forecasting model. 

In this paper, a deep learning method is introduced, 

named as Long Short-Term Memory (LSTM) 

(Hochreiter and Schmidhuber, 1997), which ap-

plies a sequence of observed values as input to 

predict the next values without the data prepro-

cessing step for stationary time series. 

LSTM is an improved version of recurrent neural 

network (RNN) (Rumelhart et al., 1986; Karpathy, 

2015) designed for processing sequential data by 

learning patterns over time. The LSTM-based 

methods can be found in many applications of 

voice, text, image, and video processing such as 

machine translation, speech recognition, image 

captioning, and action detection in video streams 

(Sutskever et al., 2014; Li and Wu, 2015; Vinyals 

et al., 2015; Ullah et al., 2017). Since LSTM net-

work is capable of handling sequence dependence 

among observed inputs, it is well-suited to se-

quence prediction problems, especially for non-

linear and complex time series data (Malhotra et 

al., 2015; Guo et al., 2016; Hsu, 2017). 

2 LONG SHORT-TERM MEMORY 

ARCHITECTURES FOR TIME SERIES 

PREDICTION 

2.1 Long short-term memory 

LSTM is a type of RNN, which is widely used on a 

large variety of problems in the field of deep learn-

ing such as computer vision, machine translation 

and speech recognition. It is capable of learning 

long-term dependencies, as well as dealing with the 

exploding and vanishing gradient problems that are 

encountered in traditional RNNs. The LSTM net-

work was introduced by Hochreiter and Schmidhu-

ber (1997), and was continually refined in the fol-

lowing works such as Gers et al., 1999 and 2000; 

Cho et al., 2014.  

LSTM extends the memory capability of RNN by 

introducing three gates (input gate, output gate and 

forget gate) to regulate the flow of information 

inside the LSTM unit. The memory part of the 

LSTM unit is known as the cell. The cell takes care 

of keeping track of the dependencies between the 

elements in the input sequence. The input 

gate regulates how much information from the cur-

rent input flows into the memory cell, the forget 

gate regulates how much information from the pre-

vious cell will be retained (or discarded) into the 

current cell, and the output gate scales the value in 

the current cell used to compute the output activa-

tion of the LSTM unit. 

As similar to RNN, LSTM network can be unrolled 

in time as a chain of repeating modules of neural 

network. Each repeating module comprises four 

interacting layers as shown in Fig. 2. 

https://arxiv.org/search/cs?searchtype=author&query=Vinyals%2C+O
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Fig. 2: The repeating module in an LSTM network (Olah, 2015). The LSTM network can be viewed as 

a chain of repeating modules, each including four interacting layers (input gate, forget gate, cell up-

date and output gate) 

The four layers in the LSTM unit are formulated as 

follows: 

Input gate layer: 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖). 

Forget gate layer:  

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓). 

Cell update layer: 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝐶). 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 . 

Output gate layer: 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑜). 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛 ℎ(𝐶𝑡). 

where: 

σ is the logistic sigmoid function, tanh is the hy-

perbolic tangent function. 

Xt is the input at time step t. 

it, ft and ot are the input gate state, the forget gate 

state and the output gate state at time step t respec-

tively. 

Ct is the cell state at time step t. 

ht is the hidden state at time step t, also known as 

the output of the LSTM unit. 

2.2 Long short-term memory architectures 

In this paper, three types of LSTM architectures are 

used for the time series forecasting problem. They 

are vanilla LSTM, bidirectional LSTM and stacked 

LSTM which present the way the LSTM network 

is used as layers in network architectures (Jurafsky 

and Martin, 2019). 

2.2.1 Vanilla LSTM 

The vanilla LSTM is a simple LSTM architecture 

as shown in Fig. 3, where memory cells of a single 

LSTM layer are used in a simple network structure. 

The input layer contains inputs from time 

steps 1 to n, input for each time step is fed to the 

LSTM layer. The output layer with a single ele-

ment is used to make prediction at next time step, 

which is an interpretation from the end of output 

sequence of LSTM units. 

 

Fig. 3: Structure of a vanilla LSTM. The vanilla model takes the input sequence x1, x2,…, xn and gen-

erates the next value yn+1, which is an interpretation of the output from the last LSTM unit 
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2.2.2 Stacked LSTM  

In the stacked LSTM, LSTM layers are stacked one 

on top of another into deep recurrent neural net-

works as shown in Fig. 4. The output is taken from 

the last LSTM layer. 

 

Fig. 4: Structure of a stacked LSTM. The stacked model takes the input sequence x1, x2,…, xn and generates 

the next value yn+1, which is an interpretation of the output from the last unit of the last LSTM layer 

2.2.3 Bidirectional LSTM 

The bidirectional LSTM model consists of two 

independent LSTM networks, one where the input 

sequence is processed from left to right and the 

other from right to left. This kind of LSTM archi-

tecture allows the model to learn the input se-

quence in both forward and backward directions 

and combine both interpretations at the output as 

shown in Fig. 5. 

 

Fig. 5: Structure of a bidirectional LSTM. The bidirectional model takes the input sequence x1, x2,…, 

xn and generates the next value yn+1, which is combined from the interpretations of the outputs of the 

forward and backward LSTM networks 

2.3 Dataset 

The M-Competitions (Makridakis and Hibon, 

2000; Makridakis et al., 2018) have been organized 

for empirical studies in the field of forecasting. 

Various methods have been proposed and com-

pared to each other by their forecasting perfor-

mance on the benchmark datasets. 
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In the experiments of this paper, the M3-

Competition data (M3-Competition, 2000) is used. 

This data consists of 3003 time series, mainly in 

business and economic domains. Only the yearly 

dataset is employed in evaluating the LSTM mod-

els to reduce the training time. The yearly dataset is 

subdivided into six categories (micro, industry, 

macro, finance, demographic and other) and in-

cludes 645 time series with different numbers of 

observations as shown in Table 1. 

Table 1: The categories of 645 yearly time series 

used in the M3-Competition 

Types of 

time series 

Number 

of time 

series 

Minimum 

observations 

Maximum 

observations 

Micro 146 20 20 

Industry 102 21 47 

Macro 83 22 23 

Finance 58 20 47 

Demographic 245 20 47 

Other 11 36 38 

As in the M3-Competition (Makridakis and Hibon, 

2000), the number of forecasts is chosen as six for 

the yearly time series. In other words, the last six 

observations of each time series are reserved for 

evaluating the forecasting performance of the 

LSTM models, while the preceding observations 

are used in developing the forecasting models. The 

forecasted values are subsequently compared with 

the actual values to measure forecasting accuracy 

of the models. 

The symmetric mean absolute percentage error 

(sMAPE) metric is used as the forecasting accuracy 

measure for the model performance evaluation, 

defined as: 

100

𝑁
∑

2 ∗ |𝑎𝑖 − 𝑓𝑖|

(𝑎𝑖 + 𝑓𝑖)

𝑁

𝑖=1

. 

where ai is the actual value, fi is the forecasted val-

ue and N is the number of forecasts. The sMAPE 

metric is averaged across the horizon of all the 

forecasts. This metric is often used as an accuracy 

measure in forecasting competitions because it 

avoids the problem of large errors when the actual 

values ai are close to zero, and the asymmetry in 

absolute percentage errors when the values ai and fi 

are different. 

2.4 Experimental results and discussion 

All the experiments have been run on a system 

Intel(R) 2-core Xeon CPU2.30GHz, 13GB RAM. 

The system is installed with the library packages 

including Tensorflow version 1.15 and Keras ver-

sion 2.2 for developing and evaluating the LSTM 

models. 

Table 2 shows the sMAPE values of the three 

LSTM architectures on the different categories of 

time series. It can be seen that the three LSTM 

models show the good results on the macro and 

demographic categories with the average sMAPE 

around 8% and 11.5% respectively, while their 

performances on the other four types of the time 

series data are worse with the average sMAPE 

close to or more than 20%. Besides, the overall 

average sMAPE of each LSTM model is less than 

18%, particularly 17.9%, 17.3% and 17.1% for the 

single LSTM, the stacked LSTM and the bidirec-

tional LSTM, respectively. In general, the bidirec-

tional LSTM has the better performance than the 

two remaining LSTM models. 

Table 2: The sMAPE values of the three LSTM architectures on the different categories 

LSTM Model 
Category of time series 

Average 
Micro Industry Macro Finance Demographic Other 

Single LSTM 27.7 19.7 8.0 27.9 11.7 29.6 17.9 

Stacked LSTM 25.8 19.5 7.7 28.4 11.4 28.8 17.3 

Bidirectional LSTM 25.8 19.2 7.5 27.6 11.3 29.1 17.1 

Table 3 shows the sMAPE values of the LSTM 

models on the different forecasting horizons. The 

LSTM models achieve low absolute percentage 

errors at the first time steps, particularly close to 

7.5% and 11.5% at the time steps 1 and 2. The er-

rors become larger when the time steps increase. 

Overall, the bidirectional LSTM model obtains the 

lower average sMAPE compared to the single and 

stacked LSTM models on the next four and six 

forecasts. The main reason might come from the 

fact that the bidirectional LSTM model can learn 

the time series trends in both the forward and 

backward directions. 
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Table 3: The sMAPE values of the LSTM models on the different forecasting horizons 

LSTM Model 
Forecasting Horizon Average 

1 2 3 4 5 6 1 to 4 1 to 6 

Single LSTM 7.7* 11.7 16.8 20.0 24.1 26.9 14.07** 17.88 

Stacked LSTM 7.7 11.6 16.5 19.3 23.1 25.4 13.79 17.28 

Bidirectional LSTM 7.6 11.5 16.5 19.2 22.8 24.9 13.69 17.08 

* The sMAPE values on the different forecasting horizons are rounded to one decimal place. 

** The average sMAPE values are rounded to two decimal places. 

Table 4 shows the sMAPE values on the same 

yearly dataset of several baseline models proposed 

by the competitors participating in the M3-

Competition. It is seen that the LSTM models 

show the better results than most of the proposed 

models in Table 4 regarding the average sMAPE 

on the next four and six forecasts. Exceptionally, 

the LSTM models have the lower performance than 

the Autobox2 model. In particular, the average 

sMAPE of the bidirectional LSTM is 13.69% high-

er than that of the Autobox2 (13.65%) on the next 

four forecasts, and is 17.08% higher than 16.52% 

of the Autobox2 on the next six forecasts. Howev-

er, the bidirectional LSTM obtains the lower 

sMAPE values than the Autobox2 at the very first 

forecasting horizons; for example, 7.6% and 11.5% 

of the bidirectional LSTM lower than 8% and 

12.2% of the Autobox2 at the first and second ho-

rizons respectively. In the M3-Competition, the 

Autobox2 model is shown to be the best performer 

on the next four forecasts, and one of the best per-

formers on the next six forecasts when it is evalu-

ated on the yearly dataset with the sMAPE accura-

cy measure. 

Table 4: The sMAPE values of several baseline methods in the M3-Competition 

LSTM Model 
Forecasting Horizon Average 

1 2 3 4 5 6 1 to 4 1 to 6 

Holta 8.3 13.7 19 22 25.2 27.3 15.77 19.27 

Winterb 8.3 13.7 19 22 25.2 27.3 15.77 19.27 

Dampenc 8 12.4 17 19.3 22.3 24 14.19 17.18 

B–J automaticd 8.6 13 17.5 20 22.8 24.5 14.78 17.73 

Autobox1e 10.1 15.2 20.8 24.1 28.1 31.2 17.57 21.59 

Autobox2e 8 12.2 16.2 18.2 21.2 23.3 13.65 16.52 

Autobox3e 10.7 15.1 20 22.5 25.7 28.1 17.09 20.36 

ARARMAf 9 13.4 17.9 20.4 23.8 25.7 15.17 18.36 

Automat ANNg 9.2 13.2 17.5 20.3 23.2 25.4 15.04 18.13 

a Automatic Holt’s Linear Exponential Smoothing (two parameter model). 

b Holt–Winter’s linear and seasonal exponential smoothing (two or three parameter model). 

c Dampen Trend Exponential Smoothing. 

d Box–Jenkins methodology of ‘Business Forecast System’. 

e Robust ARIMA univariate Box–Jenkins with/without Intervention Detection. 

f Automated Parzen’s methodology with Auto regressive filter. 

g Automated Artificial Neural Networks for forecasting purposes. 

3 CONCLUSIONS 

In this paper, three different LSTM architectures 

are introduced for time series forecasting problem. 

They include the vanilla LSTM, the stacked 

LSTM, and the bidirectional LSTM. They perform 

well on the macro and demographic categories of 

the benchmark time series dataset. The bidirection-

al LSTM shows the best results among the three 

LSTM models in both the experiments of different 

time series data categories and forecasting hori-

zons. In comparison with the baseline models, the 

LSTM models achieve the better performance than 

most of them except for the Autobox2 model. In 

future work, ensemble learning models combined 

with LSTM will be used to forecast time series 

data, as well as these models will be evaluated on 

various benchmark time series datasets. 
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