Hệ thống gợi ý thường tạo ra một danh sách các mục tin để gợi ý cho người dùng theo một trong hai cách: lọc dựa trên nội dung (content-based filtering) và lọc cộng tác (collaborative filtering). Lọc dựa trên nội dung là hướng tiếp cận căn cứ vào việc phân tích đặc trưng trên nội dung của các mục tin mà người dùng đã chọn trong quá khứ và hệ thống thực hiện gợi ý cho người dùng những mục tin có đặc trưng nội dung tương tự. Lọc cộng tác là hướng tiếp cận dựa trên nhóm người dùng đã từng chọn những mục tin giống người dùng cần gợi ý để xác định những mục tin cần giới thiệu với người này. Những hướng tiếp cận này chỉ sử dụng dữ liệu có sẵn để xây dựng các mô hình dự đoán. Trên thực tế, tồn tại những hệ thống gợi ý chưa sẳn có hoặc chưa đủ dữ liệu để huấn luyện cho mô hình dự đoán. Điều này cũng là một trong những nguyên nhân làm giảm độ chính xác của các kết quả gợi ý. Trong bài viết này chúng tôi giới thiệu giải pháp tích hợp xử lý ngữ nghĩa vào hệ thống gợi ý. Phương pháp này là sự kết hợp giữa kỹ thuật gợi ý truyền thống và phân tích mối quan hệ ngữ nghĩa của những mục tin trong hệ thống được lưu trữ bằng Ontology.Thông qua mô hình ngữ nghĩa, chúng tôi tiến hành suy diễn dữ liệu nhằm tăng thêm dữ liệu huấn luyện cho các mô hình dự đoán. Thực nghiệm cho thấy với việc tích hợp ngữ nghĩa để suy diễn thêm dữ liệu, các mô hình cho kết quả dự đoán chính xác hơn so với chỉ sử dụng dữ liệu sẵn có.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên