Recommender Systems are widely used in many areas such as entertainment, education, science, especially e-commerce. Integrat- ing recommender system techniques to online shopping systems to rec- ommend suitable products to users is really useful and necessary. In this work, we propose an approach for building an online shopping rec- ommender system using implicit feedback from the users. For building the system, first we propose a method to collect the implicit feedback from the users. Then, we propose an ensemble method which combine several extended matrix factorization models which are specialized for those implicit feedback data. Next, we analyze, design, and implement an online system to integrate the aforementioned recommendation tech- niques. After having the system, we collect the feedback from the real users to validate the proposed approach. Results show that this approach is feasible and can be applied for the real systems.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên