Đăng nhập
 
Tìm kiếm nâng cao
 
Tựa bài viết
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
Vol. 17, No. 3 (2025) Trang: 1-12

This study investigates the impact of inner-loop pressure regulation on the dynamic performance of pneumatic artificial muscle (PAM) systems using a dual-loop control architecture. Three pressure control strategies – Proportional-Integral (PI), Proportional-Integral-Derivative (PID), and Radial Basis Function neural network-tuned PID (RBF-PID) – are experimentally evaluated in terms of tracking accuracy, transient response, and disturbance rejection. Results show that the RBF-PID controller achieves the highest accuracy of pressure tracking , with a root-mean-square error (RMSE) of 0.067 bar under a modulated sinusoidal input, outperforming PID (0.088 bar) and PI (0.094 bar) controllers. In position control tasks, all dual-loop configurations offer improved stability compared to the single-loop setup. The RBF-PID controller further enhances performance, achieving a settling time of 3.04 seconds, zero overshoot, and the shortest recovery time of 2.73 seconds under a 10-kg load disturbance. Although the performance gap between PI and PID remains modest, suggesting PI remains a practical solution for resource-constrained applications, the RBF-PID controller provides significant benefits in adaptability and robustness. These findings underscore the importance of adaptive pressure regulation in improving the tracking accuracy and resilience of PAM-based actuators. The choice of control strategy should therefore be guided by the specific application context, balancing control performance with computational and hardware constraints.

Các bài báo khác
 


Vietnamese | English






 
 
Vui lòng chờ...