Đăng nhập
Tìm kiếm nâng cao
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
(2016) Trang:
Tạp chí: CIFED, Toulouse, France, 8-11/3/2016

Searching for the most similar matches to high dimensional feature vectors is the most computationally expensive part of many computer vision and document retrieval systems. This work proposes a time-efficient document retrieval system based on logo spotting. The spotting approach is based on feature matching and grouping. In order to reduce the number of key- point features to be matched, we propose to utilize a text/non-text separation method to get rid ABSTRACT.of text layer features which are irrelevant to logo matching. The separation method is used as a fast and effective preprocessing step. We further optimize the key-point feature matching step by using an approximate nearest neighbor search algorithms. The overall document retrieval with focused logo retrieval is evaluated on the standard Tobacco-800 database and also our private advertisement magazine database. The results show that the two proposed speed up steps – specially the text separation – reduce the computation time of the system sharply by 75% and 47% on the two databases respectively, while its precision remains unaffected.

Các bài báo khác
1 (2015) Trang:
Tạp chí: International Conference on Document Analysis and Recognition (ICDAR’2015)
1 (2015) Trang:
22 (2014) Trang: 3056-3061
Tạp chí: the 22nd International Conference on Pattern Recognition, Stockholm, 24-28 August 2014,

Vietnamese | English

Vui lòng chờ...