Thông tin chung: Ngày nhận bài: 15/09/2017 Ngày nhận bài sửa: 10/10/2017 Ngày duyệt đăng: 20/10/2017 Title: Matrix and tensor factorization with temporal effect in recommender systems Từ khóa: Hệ thống gợi ý, làm trơn hàm mũ, phân rã ma trận, phân rã nhân tử Keywords: Exponential smoothing, matrix factorization, recommender systems, tensor factorization | ABSTRACT This paper proposes the construction of a recommender system to predict users’ preferences based on matrix factorization techniques. Because of the changes of users’ preferences time by time, to achieve more accurate result, exponential smoothing is integrated into the matrix factorization model by utilizing tensor factorization. This usage aims at exploiting and taking advantage of information about the time and the order of users’ giving feedbacks. The model is tested relied on the datasets in suggestion and evaluation using the root mean squared error. The experimental results demonstrate fairly good performance of the proposed method. TÓM TẮT Bài viết này đề xuất một giải pháp dự đoán sở thích của người dùng dựa trên kỹ thuật phân rã ma trận (Matrix Factorization – MF) có tích hợp yếu tố thời gian trong hệ thống gợi ý (Recommender Systems – RS). Do sở thích của người dùng có thể thay đổi theo thời gian, để kết quả gợi ý có độ chính xác cao hơn chúng tôi đề xuất tích hợp phương pháp dự báo san bằng hàm mũ (Exponential Smoothing - ES) vào mô hình Tensor Factorization với mục tiêu khai thác và tận dụng được các thông tin về thời gian cũng như trình tự (sequence) mà người dùng đã đưa ra phản hồi. Thực nghiệm ban đầu trên các tập dữ liệu chuẩn trong lĩnh vực gợi ý và đánh giá bằng độ đo RMSE (Root Mean Squared Error) đã cho thấy hướng tiếp cận này cho kết quả rất khả quan. |