Đăng nhập
Tìm kiếm nâng cao
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
248 (2019) Trang:
Tạp chí: Applied Energy
Liên kết:

Microalgae offer promising and multifaceted solutions to the ongoing issues regarding energy security and climate change. One of the major bottlenecks in utilizing algal biomass is the excessive amount of moisture to be managed after harvest, which translates to costs in the dewatering step. Newer strategies have been developed to be able to convert algal biomass feedstock to biodiesel without the need for extraction and drying, such as in-situ transesterification. This process can be improved by concurrently subjecting the system under subcritical conditions, which could also potentially remove the use of catalysts as well as offer tolerance to free fatty acid content of the feedstock. A definitive screening design of experiment was utilized to provide an acceptable prediction on the effects of key process parameters – temperature, reaction time, and solvent-to-solid ratio to the obtainable fatty acid methyl ester (FAME) yield and process power consumption. The optimum operating condition, which combines the benefits of maximizing the FAME yield and minimizing the process power consumption was found to be at 220 °C, 2 h, and 8 ml methanol per gram of biomass (80 wt% moisture). This produces a FAME yield of 74.6% with respect to the maximum obtainable FAME. Sensitivity analysis discussed the implications regarding the weight of importance between the two responses of interest. The benefits of the proposed process can be observed when compared to its conventional transesterification counterpart in terms of energy savings and reduced environmental impact. Hence, this process offers a feasible alternative to produce biodiesel from microalgae.

Các bài báo khác

Vietnamese | English

Vui lòng chờ...