Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
55 (2017) Trang: 47-57
Tạp chí: Soil Research

Sea-level rise and saline water intrusion have caused a shortage of fresh water and affected agricultural areas globally. Besides inundation, the salinity could alter soil nitrogen and carbon cycling in coastal soils. To examine the effect of salinity, an incubation experiment was used to investigate soil nitrogen and carbon cycling from an acid sulfate soil and an alluvial soil with and without additional nitrogen and carbon sources. Four levels of saline solution of 0.03, 10, 16 and 21 dS m–1 were used to submerge acid sulfate and alluvial soil samples in a 125-mL jar. The experimental jars were incubated in the dark at 25°C. Gas samples were collected over 4 weeks and analysed for nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4). The results showed that salinity significantly decreased N2O emissions from the acid sulfate soil but did not affect emissions from the alluvial soil. Addition of glucose and nitrate enhanced N2O production in both salt-affected soils. Emissions of CO2 were not different among the salinity treatments, whereas available carbon and nitrate promoted soil respiration. Changes in CH4 fluxes over the 4-week incubation were the same for both soils, and substrate addition did not affect emissions in either soil. The findings indicate that salinity has altered carbon and nitrogen cycles in the acid sulfate soil, and future fertiliser and crop management will need to account for the changed nutrient cycling caused by saline water intrusion and climate change.

Các bài báo khác
Tập 56, Số CĐ Khoa học đất (2020) Trang: 159-168
Tải về
 


Vietnamese | English






 
 
Vui lòng chờ...