Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
139 (2023) Trang: 108902
Tạp chí: Fish and Shellfish Immunology

 

Nile tilapia (Oreochromis niloticus) is one of the major food fish worldwide. The farming business, on the other hand, has faced considerable obstacles, such as disease infestations. Toll-like receptors (TLRs) play an important function in the activation of the innate immune system in response to infections. Unc-93 homolog B1 (UNC93B1) is a key regulator of nucleic acid (NA)-sensing TLRs. Here the UNC93B1 gene, which was cloned from Nile tilapia tissue for this investigation, had the same genetic structure as a homologous gene in humans and micePhylogenetic analysis revealed that Nile tilapia UNC93B1 clustered with UNC93B1 from other species and separately from the UNC93A clade. The gene structure of the Nile tilapia UNC93B1 was found to be identical to that of human UNC93B1. Our gene expression studies revealed that Nile tilapia UNC93B1 was highly expressed in the spleen, followed by other immune-related tissues such as the head kidney, gills, and intestine. Moreover, Nile tilapia UNC93B1 mRNA transcripts were up-regulated in vivo in the head kidney and spleen tissues from poly I:C and Streptococcus agalactiae injected Nile tilapia, as well as in vitro in LPS stimulated Tilapia head kidney (THK) cells. The Nile tilapia UNC93B1-GFP protein signal was detected in the cytosol of THK cells and was co-localized with endoplasmic reticulum and lysosome but not with mitochondria. Moreover, the results of a co-immunoprecipitation and immunostaining analysis showed that Nile tilapia UNC93B1 can be pulled down with fish-specific TLRs such as TLR18 and TLR25 from Nile tilapia, and was found to be co-localized with these fish-specific TLRs in the THK cells. Overall, our findings highlight the potential role of UNC93B1 as an accessory protein in fish-specific TLR signaling.

 
 


Vietnamese | English






 
 
Vui lòng chờ...