Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2023
Số tạp chí 35(2023) Trang: 385301
Tạp chí: Journal of Physics: Condensed Matter

In this work, we investigate the intrinsic as well as modulated optical properties of the
AB-stacking bilayer armchair graphene ribbons in the absence and presence of external electric fields. Single-layer ribbons are also considered for comparison. By using a tight-binding model in combination with the gradient approximation, we examine the energy bands, the density of states and the absorption spectra of the studied structures. Our results demonstrate that when external fields are not present, the low-frequency optical absorption spectra display numerous peaks and they vanish at the zero point. In addition, the number, the position, and the intensity of the absorption peaks are strongly associated with the ribbon width. With the wider ribbon
width, more absorption peaks are present and a lower threshold absorption frequency is observed. Interestingly, in the presence of electric fields, bilayer armchair ribbons exhibit a lower threshold absorption frequency, more absorption peaks, and weaker spectral intensity. When increasing the strength of the electric field, the prominent peaks of the edge-dependent selection rules are lowered, and the sub-peaks satisfying the extra selection rules come to exist. The obtained results certainly provide a ore comprehensive understanding of the correlation between the energy band transition and the optical absorption, in both single-layer and bilayer graphene armchair ribbons, and could provide new insights into developments of optoelectronic device applications based on graphene bilayer ribbons.

Các bài báo khác


Vietnamese | English






 
 
Vui lòng chờ...