Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
(2018) Trang: 255-265
Tạp chí: Intelligent Information and Database Systems

Our proposed decision tree using local support vector regression models (tSVR) is to handle the regression task of large datasets. The learning algorithm tSVR of regression models is done by two main steps. The first one is to construct a decision tree regressor for partitioning the full training dataset into k terminal-nodes (subsets), followed which the second one is to learn the SVR model from each terminal-node to predict the data locally in the parallel way on multi-core computers. The tSVR algorithm is faster than the standard SVR in training the non-linear regression model from large datasets while maintaining the high correctness in the prediction. The numerical test results on datasets from UCI repository showed that the proposed tSVR is efficient compared to the standard SVR.

Các bài báo khác
Số 43 (2016) Trang: 126-134
Tải về
Số Công nghệ TT 2017 (2017) Trang: 164-170
Tải về
Số Công nghệ TT 2015 (2015) Trang: 179-188
Tải về
Số 42 (2016) Trang: 18-27
Tải về
(2019) Trang: 119-126
Tạp chí: Hội nghị nghiên cứu cơ bản và ứng dụng công nghệ thông tin, Huế, 6/2019
3(4) (2019) Trang: 1-19
Tạp chí: Journal of Information & Telecommunication
(2017) Trang: 124-130
Tạp chí: FAIR 2017 - Đà Nẵng - 8/2017
 

CTUJoS indexed by Crossref

Vietnamese | English


BC thường niên 2019


Bản tin ĐHCT


TCKH tiếng Việt


TCKH tiếng Anh

 
 
Vui lòng chờ...