Đăng nhập
Tìm kiếm nâng cao
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
1688 (2022) Trang: 653-664
Tạp chí: Communications in Computer and Information Science

The risk of lung disease is immense for many people, espe- cially in developing countries, where billions of people face energy poverty and are dependent on polluting forms of energy. The World Health Organization estimates that more than four million premature deaths occur each year from diseases related to household air pollution, including pneumonia. Radiologists diagnose and detect medical conditions with imaging techniques such as CT, MRI, and X-rays. However, they face many challenges interpreting chest radiographs in high workload conditions, even for highly experienced physicians. A tool for automatically locating and classifying anomalies would be of great value, and a deep learning approach provides several ways to achieve this goal. In this study, we train Faster R-CNN neural network for lung disease classification using the feature extraction networks such as ResNet, CheXnet, and Inception ResNet V2. The experiments are conducted on a dataset of 112,000 images with corresponding labels annotated by experienced radiologists. The experimental results show that the models can identify the exact lesion area for a given chest X-ray and the classification accuracy is up to 95.5%. The Grad-CAM is performed to highlight the lesion area thus reducing stress for physicians while providing patients with a more accurate diagnosis.

Các bài báo khác
1688 (2022) Trang: 145-160
Tạp chí: Communications in Computer and Information Science
(2020) Trang: 19-24
Tạp chí: The 2020 12th International Conference on Knowledge and Systems Engineering (KSE)
In Proceedings of the 6th International Conference on Computer Science, Applied Mathematics and Applications, ICCSAMA 2019 (2019) Trang: 391-402
Tạp chí: Advanced Computational Methods for Knowledge Engineering
(2016) Trang:
Tạp chí: Hội nghị khoa học quốc gia lần thứ IX “Nghiên cứu cơ bản và ứng dụng công nghệ thông tin”, Đại học Cần Thơ, ngày 04 và 05 tháng 8 năm 2016
(2016) Trang:
Tạp chí: 32ème Conférence sur la Gestion de Données - Principes, Technologies et Applications (BDA 2016), Futuroscop - Poitiers - France, 15 au 18 Novembre, 2016
25 (2016) Trang: 33-70
Tạp chí: Transactions on Large-Scale Data- and Knowledge-Centered Systems
Số 2 (2013) Trang: Article No.: 2
Tạp chí: The 2nd International Workshop on Cloud Intelligence (Cloud-I 2013)

Vietnamese | English

Vui lòng chờ...