Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2023
Số tạp chí 13(2023) Trang: 1728
Tạp chí: Nanomaterials

One-dimensional (1D) novel pentagonal materials have gained significant attention as a new class of materials with unique properties that could influence future technologies. In this report, we studied the structural, electronic, and transport properties of 1D pentagonal PdSe2 nanotubes (p-PdSe2 NTs). The stability and electronic properties of p-PdSe2 NTs with different tube sizes and under uniaxial strain were investigated using density functional theory (DFT). The studied structures showed an indirect-to-direct bandgap transition with slight variation in the bandgap as the tube diameter increased. Specifically, (5 × 5) p-PdSe2 NT, (6 × 6) p-PdSe2 NT, (7 × 7) p-PdSe2 NT, and (8 × 8) p-PdSe2 NT are indirect bandgap semiconductors, while (9 × 9) p-PdSe2 NT exhibits a direct bandgap. In addition, under low uniaxial strain, the surveyed structures were stable and maintained the pentagonal ring structure. The structures were fragmented under tensile strain of 24%, and compression of −18% for sample (5 × 5) and −20% for sample (9 × 9). The electronic band structure and bandgap were strongly affected by uniaxial strain. The evolution of the bandgap vs. the strain was linear. The bandgap of p-PdSe2 NT experienced an indirect–direct–indirect or a direct–indirect–direct transition when axial strain was applied. A deformability effect in the current modulation was observed when the bias voltage ranged from about 1.4 to 2.0 V or from −1.2 to −2.0 V. Calculation of the field effect I–V characteristic showed that the on/off ratio was large with bias potentials from 1.5 to 2.0 V. This ratio increased when the inside of the nanotube contained a dielectric. The results of this investigation provide a better understanding of p-PdSe2 NTs, and open up potential applications in next-generation electronic devices and electromechanical sensors.

Các bài báo khác
Số tạp chí 1(2023) Trang:
Tạp chí: Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
Số tạp chí 18(2023) Trang: 99-114
Tạp chí: International Journal of Emerging Technologies in Learning
Số tạp chí 35(2023) Trang: 317-329
Tạp chí: Journal of Namibian Studies


Vietnamese | English






 
 
Vui lòng chờ...