Đăng nhập
Tìm kiếm nâng cao
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
1 (2020) Trang: 1-19
Tạp chí: SN Computer Science

Classifying gene expression data is known to contain keys for solving the fundamental problems in cancer studies. However, this issue is a complex task because of the large p, small n issue on gene expression data analysis. In this paper, we propose the improvements in the large p, small n classification issue for the study of human cancer. First, a new enhancing sample size method with generative adversarial network is proposed to improve classification algorithms. Second, we suggest a classification approach with over-sampling technique using features extracted by deep convolutional neural network. Numerical test results on fifty very-high-dimensional and low-sample-size gene expression data datasets from the Kent Ridge Biomedical and Array Expression repositories illustrate that the proposed models are more accurate than state-of-the-art classifying models. In addition, we also have explored the performance of support vector machines, k nearest neighbors and random forests, which have improved when apply our approaches.

Các bài báo khác
Số Công nghệ TT 2015 (2015) Trang: 9-16
Tải về
17 (2019) Trang: 14-20
Tạp chí: Journal of information and communication convergence engineering
6 (2019) Trang: 255–273
Tạp chí: Intl Conf. on Future Data and Security Engineering 2019 (FDSE 2019)

Vietnamese | English

Vui lòng chờ...