Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
1925 (2023) Trang: 34-48
Tạp chí: Communications in Computer and Information Science

In this paper, we propose the random forest algorithm of biggest margin trees RF-BMT for the multi-class classification. The novel algorithm enhances the classification of chest X-ray images, specifically for distinguishing between normal, covid-19, edema, mass-nodule, and pneumothorax cases. Our approach combines contrastive learning with our proposed algorithm to improve performance and address the limitation of labeled data by leveraging a large amount of unlabeled data for learning features. We propose training the algorithm on the features extracted from the linear fine-tuned model of Momentum Contrast (MoCo), which is trained on Resnet50 architecture. The RF-BMT algorithm plays a role as a replacement for softmax in deep networks. Based on the empirical results, our proposed RF-BMT algorithm demonstrates substantial improvement compared to solely fine-tuning the linear layer both the ImageNet pretrained model and the MoCo pretrained model, reaching an impressive accuracy rate of 88.4%.

Các bài báo khác
Nguyen Thai-Nghe, Thanh-Nghi Do, Peter Haddawy (2023) Trang: 81-94
Tạp chí: Communications in Computer and Information Science
 


Vietnamese | English






 
 
Vui lòng chờ...