Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
Nguyen Thai-Nghe, Thanh-Nghi Do, Peter Haddawy (2023) Trang: 81-94
Tạp chí: Communications in Computer and Information Science

In this paper, we propose a health monitoring system, which leverages the Internet of Things (IoT) in conjunction with time-series deep learning techniques. The main purpose is to build the system for connecting to the MiBand smart watch device as well as to provide timely notifications about health abnormal signs of the wearer to their relatives, doctors to assist in timely handling. Cardiovascular disease is one of the dangerous diseases, causing patients to have a very high risk of death and rapid death. Our proposed system can monitor, predict and detect abnormal heart rhythms, so it plays an important role for early detection of cardiac dysfunction, timely treatment, and reducing the risk of death. To solve this problem, we have developed a system to collect data from the MiBand device, build a model for predicting heart rate and an abnormal alert system to relatives and doctors. The heart rate prediction module is trained on six popular deep learning models. The experimental results show that all models have the mean absolute error (MAE) in the range of 3.4 to 4.2. The results of this study can be the basis for further studies to develop other health monitoring initiatives with comparable objectives.

Các bài báo khác
1925 (2023) Trang: 34-48
Tạp chí: Communications in Computer and Information Science
 


Vietnamese | English






 
 
Vui lòng chờ...